Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Psychopharmacology (Berl) ; 240(4): 871-880, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36795109

RESUMO

RATIONALE: Acetylcholinergic antagonists have shown some promise in reducing addiction-related behaviors in both preclinical and clinical studies. However, the psychological mechanisms by which these drugs are able to affect addictive behavior remain unclear. A particular key process for the development of addiction is the attribution of incentive salience to reward-related cues, which can be specifically measured in animals using a Pavlovian conditioned approach procedure. When confronted with a lever that predicts food delivery, some rats engage with the lever directly (i.e., they sign track), indicating attribution of incentive-motivational properties to the lever itself. In contrast, others treat the lever as a predictive cue and approach the location of impending food delivery (i.e., they goal track), without treating the lever itself as a reward. OBJECTIVES: We tested whether systemic antagonism of the either nicotinic or muscarinic acetylcholine receptors would selectively affect sign- or goal-tracking behavior, indicating a selective effect on incentive salience attribution. METHODS: A total of 98 male Sprague Dawley rats were either given the muscarinic antagonist scopolamine (100, 50, or 10 µg/kg i.p.) or the nicotinic antagonist mecamylamine (0.3, 1.0, or 3 mg/kg i.p.) before being trained on a Pavlovian conditioned approach procedure. RESULTS: Scopolamine dose-dependently decreased sign tracking behavior and increased goal-tracking behavior. Mecamylamine reduced sign-tracking but did not affect goal-tracking behavior. CONCLUSIONS: Antagonism of either muscarinic or nicotinic acetylcholine receptors can reduce incentive sign-tracking behavior in male rats. This effect appears to be specifically due to a reduction in incentive salience attribution since goal-tracking either increased or was not affected by these manipulations.


Assuntos
Motivação , Nicotina , Ratos , Animais , Masculino , Ratos Sprague-Dawley , Nicotina/farmacologia , Mecamilamina/farmacologia , Recompensa , Derivados da Escopolamina/farmacologia , Sinais (Psicologia)
2.
Nat Commun ; 13(1): 6194, 2022 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-36261441

RESUMO

Postnatal neurogenesis provides an opportunity to understand how newborn neurons integrate into circuits to restore function. Newborn olfactory sensory neurons (OSNs) wire into highly organized olfactory bulb (OB) circuits throughout life, enabling lifelong plasticity and regeneration. Immature OSNs form functional synapses capable of evoking firing in OB projection neurons but what contribution, if any, they make to odor processing is unknown. Here, we show that immature OSNs provide odor input to the mouse OB, where they form monosynaptic connections with excitatory neurons. Importantly, immature OSNs respond as selectively to odorants as mature OSNs and exhibit graded responses across a wider range of odorant concentrations than mature OSNs, suggesting that immature and mature OSNs provide distinct odor input streams. Furthermore, mice can successfully perform odor detection and discrimination tasks using sensory input from immature OSNs alone. Together, our findings suggest that immature OSNs play a previously unappreciated role in olfactory-guided behavior.


Assuntos
Neurônios Receptores Olfatórios , Camundongos , Animais , Neurônios Receptores Olfatórios/fisiologia , Bulbo Olfatório/fisiologia , Odorantes , Neurogênese/fisiologia , Interneurônios
3.
J Neurosci ; 42(9): 1845-1863, 2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-35082119

RESUMO

Tau protein accumulation drives toxicity in several neurodegenerative disorders. To better understand the pathways regulating tau homeostasis in disease, we investigated the role of ubiquilins (UBQLNs)-a class of proteins linked to ubiquitin-mediated protein quality control (PQC) and various neurodegenerative diseases-in regulating tau. Cell-based assays identified UBQLN2 as the primary brain-expressed UBQLN to regulate tau. UBQLN2 efficiently lowered wild-type tau levels regardless of aggregation, suggesting that UBQLN2 interacts with and regulates tau protein under normal conditions or early in disease. Moreover, UBQLN2 itself proved to be prone to accumulation as insoluble protein in male and female tau transgenic mice and the human tauopathy progressive supranuclear palsy. Genetic manipulation of UBQLN2 in a tauopathy mouse model demonstrated that a physiological UBQLN2 balance is required for tau homeostasis. UBQLN2 overexpression exacerbated phosphorylated tau pathology and toxicity in mice expressing P301S mutant tau, whereas P301S mice lacking UBQLN2 showed significantly reduced phosphorylated tau. Further studies support the view that an imbalance of UBQLN2 perturbs ubiquitin-dependent PQC and autophagy. We conclude that changes in UBQLN2 levels, whether because of pathogenic mutations or secondary to disease states, such as tauopathy, contribute to proteostatic imbalances that exacerbate neurodegeneration.SIGNIFICANCE STATEMENT We defined a role for the protein quality control protein Ubiquilin-2 (UBQLN2), in age-related neurodegenerative tauopathies. This group of disorders is characterized by the accumulation of tau protein aggregates, which differ when UBQLN2 levels are altered. Given the lack of effective disease-modifying therapies for tauopathies and the function of UBQLN2 in handling various disease-linked proteins, we explored the role of UBQLN2 in regulating tau. We found that UBQLN2 reduced tau levels in cell models but behaved differently in mouse brain, where it accelerated mutant tau pathology and tau-mediated toxicity. A better understanding of the diverse functions of regulatory proteins like UBQLN2 can elucidate some of the causative factors in neurodegenerative disease and outline new routes to therapeutic intervention.


Assuntos
Doenças Neurodegenerativas , Tauopatias , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Doenças Neurodegenerativas/metabolismo , Neurônios/metabolismo , Tauopatias/metabolismo , Fatores de Transcrição/metabolismo , Ubiquitina/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo
4.
ACS Catal ; 9(9): 7746-7758, 2019 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-31592338

RESUMO

Intravascular (IV) catheters are essential devices in the hospital that are used to monitor a patient's blood and for administering drugs or nutrients. However, IV catheters are also prone to blood clotting at the point of insertion and infection by formation of robust bacterial biofilms on their surface. Nitric oxide (NO) is ideally suited to counteract both of these problems, due to its antimicrobial properties and its ability to inhibit platelet activation/aggregation. One way to equip catheters with NO releasing properties is by electrocatalytic nitrite reduction to NO by copper complexes in a multi-lumen configuration. In this work, we systematically investigate six closely related Cu(II) BMPA- and BEPA-carboxylate complexes (BMPA = bis-(2-methylpyridyl)amine); BEPA = bis-(2-ethylpyridyl)amine), using carboxylate groups of different chain lengths. The corresponding Cu(II) complexes were characterized using UV-Vis, EPR spectroscopy, and X-ray crystallography. Using detailed cyclic voltammetry (CV) and bulk electrocatalyic studies (with real-time NO quantification), in aqueous buffer, pH 7.4, we are able to derive clear reactivity relations between the ligand structures of the complexes, their Faradaic efficiencies for NO generation, their turnover frequencies (TOFs), and their redox potentials. Our results show that the complex [Cu(BEPA-Bu)](OAc) is the best catalyst with a high Faradaic efficiency over large nitrite concentration ranges and the expected best tolerance to oxygen levels. For this species, the more positive redox potential suppresses NO disproportionation, which is a major Achilles heel of the (faster) catalysts with the more negative reduction potentials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...